## DECOMPOSITIONS OF S<sup>3</sup> AND PSEUDO-ISOTOPIES(1)

## BY T. M. PRICE

In this paper we prove that if G is a cellular upper semicontinuous decomposition of  $S^3$  such that  $S^3/G$  is a 3-manifold, then there exists a pseudo-isotopy of  $S^3$  onto itself that shrinks the elements of G to points. The main tool used is the "homeomorphism theorem" of Armentrout [A]. A special case of this theorem is stated in Theorem 0 below, but roughly it says that there are homeomorphisms from  $S^3/G$  to  $S^3$  that, in some sense, approximate  $P^{-1}$  where  $P: S^3 \to S^3/G$  is the decomposition map.

The terminology used is quite standard (see [A] for definitions). We use G to denote the collection of elements of an upper semicontinuous decomposition of  $S^3$  (= Euclidean 3-sphere). We say G is cellular if each element of G is the intersection of a decreasing sequence of 3-cells. We use  $S^3/G$  to denote the decomposition space, and  $P: S^3 \to S^3/G$  to denote the natural map.

If X and Y are topological spaces, then a homotopy from X to Y is a map  $H: X \times [a, b] \to Y$ . If  $t \in [a, b]$ , we define  $H_t: X \to Y$  by  $H_t(x) = H(x, t)$ . If  $H_t$  is a homeomorphism for  $a \le t < b$  then H is called a pseudo-isotopy and if  $H_t$  is a homeomorphism for  $a \le t \le b$  then H is called an isotopy. If f and f' are maps from X to Y, then we say that f is homotopic (respectively pseudo-isotopic or isotopic) to f' if there exists a homotopy (respectively pseudo-isotopy or isotopy)  $H: X \times [a, b] \to Y$  with  $H_a = f$  and  $H_b = f'$ . An isotopy  $H: X \times [a, b] \to Y$  is called an  $\varepsilon$ -isotopy if diameter  $H(\{x\} \times [a, b]) < \varepsilon$  for each  $x \in X$ . If G is a decomposition of  $S^3$ , then to say that there exists pseudo-isotopy of  $S^3$  onto itself that shrinks the elements of G to points means that there exists a pseudo-isotopy  $H: S^3 \times [0, 1] \to S^3$  such that

- (i)  $H_0(x) = x$  for each  $x \in S^3$ ,
- (ii) if  $g \in G$  then  $H_1(g)$  is a point in  $S^3$ , and
- (iii) if  $g, g' \in G$ ,  $g \neq g'$  then  $H_1(g) \neq H_1(g')$ .

Let M be a 3-manifold (the only one we use in this paper is  $S^3$ ). A triangulation T of M is a collection of simplexes (homeomorphic images of standard closed simplexes) such that the union of the elements of T is all of M, and if two elements of T intersect, then the intersection is a face of each. A subdivision T' of the triangulation T is a triangulation of M such that each simplex of T' is contained in some simplex of T. If T is a triangulation of M and  $\sigma$  is a simplex of T, then

$$N(\sigma, T) = \bigcup \sigma'$$
 such that  $\sigma' \in T$  and  $\sigma \cap \sigma' \neq \emptyset$ ,  
 $N^2(\sigma, T) = \bigcup \sigma'$  such that  $\sigma' \in T$  and  $\sigma' \cap N(\sigma, T) \neq \emptyset$ ,

Presented to the Society, January 23, 1968; received by the editors January 15, 1968.

<sup>(1)</sup> This research supported in part by the National Science Foundation.

 $O(\sigma, T) = M - \bigcup \sigma'$  such that  $\sigma' \in T$  and  $\sigma \cap \sigma' = \emptyset$ .

Clearly,  $\sigma \subseteq O(\sigma, T) \subseteq N(\sigma, T) \subseteq N^2(\sigma, T)$  and  $O(\sigma, T)$  is open. We will also use the following facts. If  $\sigma' \not\subseteq N^2(\sigma, T)$  then  $O(\sigma, T) \cap O(\sigma', T) = \emptyset$ . If T' is a subdivision of T,  $\sigma' \in T'$  and  $\sigma \in T$  with  $\sigma' \subseteq \sigma$  then  $O(\sigma', T') \subseteq O(\sigma, T)$ .

Finally, if X is a metric space we use  $\rho_x$  to denote some fixed metric for X. If  $f, f': Z \to X$  are maps we will also use  $\rho_x(f, f')$  to denote the sup  $\{\rho_x(f(z), f'(z))\}$ . If  $X = S^3$  we will use  $\rho$  instead of  $\rho_{S^3}$ .

THEOREM 0 (ARMENTROUT). Let G be a cellular upper semicontinuous decomposition of  $S^3$ . If  $S^3/G$  is a 3-manifold then there exists a homeomorphism  $h: S^3/G \to S^3$ . Furthermore, if T is a triangulation of  $S^3/G$  then h can be chosen so that  $h(\sigma) \subseteq P^{-1}(O(\sigma, T))$  for each simplex  $\sigma$  of T.

LEMMA 1. Let G be an upper semicontinuous decomposition of  $S^3$ . Let  $M = S^3/G$  and suppose that  $h: M \to S^3$  is a homeomorphism of M onto  $S^3$ . Suppose that T is a triangulation of M and that for each simplex  $\sigma \in T$ ,  $h(\sigma) \subseteq P^{-1}(O(\sigma, T))$ . Then  $P^{-1}(O(\sigma, T) \subseteq h(N^2(\sigma, T))$  for each simplex  $\sigma \in T$ .

**Proof.** Let  $x \in P^{-1}(O(\sigma, T))$ . Then there exists a simplex  $\sigma' \in T$  such that  $x \in h(\sigma')$ . Thus  $x \in P^{-1}(O(\sigma', T))$  and hence  $O(\sigma, T) \cap O(\sigma', T) \neq \emptyset$ . This implies that there exists a simplex  $\sigma'' \in T$  such that  $\sigma \cap \sigma'' \neq \emptyset$  and  $\sigma' \cap \sigma'' \neq \emptyset$ . Thus  $\sigma'' \subseteq N(\sigma, T)$  and  $\sigma' \subseteq N^2(\sigma, T)$ , so  $x \in h(\sigma') \subseteq h(N^2(\sigma, T))$ .

THEOREM 1(2). Let G be a cellular upper semicontinuous decomposition of  $S^3$ . If  $S^3/G$  is a 3-manifold, then there exists a pseudo-isotopy of  $S^3$  onto itself that shrinks the elements of G to points.

**Proof.** The proof will proceed by obtaining a sequence of isotopies, each one of which shrinks the elements of the decomposition a little smaller. The first isotopy is obtained by appealing to degree of a homeomorphism arguments. It will, most likely, move points quite far. The succeeding isotopies will move points less and less and will be obtained by appealing to the  $\varepsilon$ ,  $\delta$  type theorems of Sanderson [S], Fisher [F], or Kister [K].

For simplicity of notation let S denote  $S^3$  and let M denote  $S^3/G$ . Of course, M is homeomorphic to  $S^3$  but we wish to distinguish between them.

Let  $\gamma > 0$  be chosen so that if f, f' are maps of M onto M with  $\rho_M(f, f') < \gamma$ , then f is homotopic to f'. Let  $T_0$  be a triangulation of M such that diameter  $O(\sigma, T_0) < \gamma$  for each simplex  $\sigma \in T_0$ .

Apply Theorem 0 to get a homeomorphism  $h_0: M \to S$  such that  $h_0(\sigma) \subseteq P^{-1}(O(\sigma, T_0))$  for each simplex  $\sigma \in T_0$ . (The final stage of the pseudo-isotopy we construct will be  $h_0 \circ P$ .)

<sup>(2)</sup> W. L. Voxman in his Ph.D. thesis at the University of Iowa has extended Theorem 1 to arbitrary 3-manifolds.

By Theorem 4 of [S], Theorem 2 of [K], or Theorem 8 of [F] there exists a  $\delta_1 > 0$  such that if  $h, h': S^3 \to S^3$  are homeomorphisms with  $\rho(h, h') < \delta_1$ , then h and h' are  $\frac{1}{2}$ -isotopic.

Let  $T_1$  be a subdivision of  $T_0$  so that for each simplex  $\sigma \in T_1$ , diameter  $h_0(\sigma) < \delta_1/5$ . By Theorem 0 there exists a homeomorphism  $h_1: M \to S$  such that  $h_1(\sigma) \subseteq P^{-1}(O(\sigma, T_1))$  for each  $\sigma \in T_1$ .

We show now that  $h_0 \circ h_1^{-1}$  is isotopic to the identity. By Theorem 3 of [S] it suffices to prove that  $h_0 \circ h_1^{-1}$  is homotopic to the identity and hence has degree 1. Consider the following diagram.

$$M \times \{0\} \cup M \times \{1\}$$
 $0 \mid \qquad \qquad \downarrow \qquad P$ 
 $M \times [0, 1]$ 
 $M \times [0, 1]$ 

The existence of the homotopy H between  $P \circ h_1$  and  $P \circ h_0$  is proved as follows. Let  $y \in M$ . Then  $y \in \sigma'$  for some simplex  $\sigma' \in T_1$  and  $\sigma' \subseteq \sigma$  for some simplex  $\sigma \in T_0$ . Hence  $h_0(y) \in P^{-1}(O(\sigma, T_0))$  and  $h_1(y) \in P^{-1}(O(\sigma', T_1)) \subseteq P^{-1}(O(\sigma, T_0))$ . Thus  $P \circ h_1(y)$  and  $P \circ h_0(y)$  are both in  $O(\sigma, T_0)$  and diameter  $O(\sigma, T_0) < \gamma$  and by our choice of  $\gamma$ , the homotopy H exists. The homotopy J is obtained by "lifting" H, using Theorem 1 of [A-P]. This lifting does not make the diagram commute, but J does extend  $h_1 \cup h_0$ . That is

- (i)  $J(y, 0) = h_1(y)$ , and
- (ii)  $J(y, 1) = h_0(y)$ .

Now define a homotopy  $K: S \times [0, 1] \rightarrow S$  as follows:

$$K(x, t) = J(h_1^{-1}(x), t).$$

Then

$$K(x, 0) = J(h_1^{-1}(x), 0) = h_1(h_1^{-1}(x)) = x,$$

and

$$K(x, 1) = J(h_1^{-1}(x), 1) = h_0 \circ h_1^{-1}(x).$$

Thus K is the required homotopy and  $h_0 \circ h_1^{-1}$  is isotopic to the identity. Let  $H: S \times [0, \frac{1}{2}] \to S$  be an isotopy such that  $H_0(x) = x$  and  $H_{1/2}(x) = h_0 \circ h_1^{-1}(x)$  for all  $x \in S$ .

By Lemma 1 it follows that for each  $\sigma \in T_1$ , diameter  $H_{1/2}(P^{-1}(O(\sigma, T_1))) < \delta_1$ , because  $H_{1/2}(P^{-1}(O(\sigma, T_1))) \subseteq H_{1/2}(h_1(N^2(\sigma, T_1))) = h_0(N^2(\sigma, T_1))$  and this latter set has diameter  $< \delta_1$ . Of course, it follows that for each element g of the decomposition, diameter  $H_{1/2}(g) < \delta$ , also.

By [S] or [K] or [F], as above, there exists a  $\delta_2 > 0$  such that if  $h, h' : S^3 \to S^3$  are homeomorphisms with  $\rho(h, h') < \delta_2$  then h and h' are  $\frac{1}{4}$ -isotopic.

Let  $T_2$  be a subdivision of  $T_1$  so that for each simplex  $\sigma \in T_2$ , diameter  $h_0(\sigma) < \delta_2/5$ .

By Theorem 0 there exists a homeomorphism  $h_2: M \to S$  such that  $h_2(\sigma) \subseteq P^{-1}(O(\sigma, T_2))$  for each simplex  $\sigma \in T_2$ .

We show now that  $H_{1/2} \circ h_1 \circ h_2^{-1}$  is  $\frac{1}{2}$ -isotopic to  $H_{1/2} = h_0 \circ h_1^{-1}$ . It suffices to show that  $\rho(H_{1/2} \circ h_1 \circ h_2^{-1}, H_{1/2}) < \delta_1$ . Let  $y \in M$ . There exists a simplex  $\sigma' \in T_2$  such that  $y \in \sigma'$  and there exists a simplex  $\sigma \in T_1$  such that  $\sigma' \subseteq \sigma$ . Then  $O(\sigma', T_2) \subseteq O(\sigma, T_1)$  and hence each of  $h_1(y)$  and  $h_2(y)$  are in  $P^{-1}(O(\sigma, T_1)) \subseteq h_1(N^2(\sigma, T_1))$ . Therefore, if  $x = h_2(y)$ , then  $H_{1/2}(x)$  and  $H_{1/2} \circ h_1 \circ h_2^{-1}(x)$  are both in

$$H_{1/2}(h_1(N^2(\sigma, T_1))) = h_0(N^2(\sigma, T_1))$$

which has diameter  $< \delta_1$ . Thus,  $\rho(H_{1/2}, H_{1/2} \circ h_1 \circ h_2^{-1}) < \delta_1$  and they are  $\frac{1}{2}$ -isotopic.

Let  $\tilde{H}: S \times [1/2, 2/3] \to S$  be a  $\frac{1}{2}$ -isotopy such that  $\tilde{H}_{1/2}: (x) = H_{1/2}(x)$  and  $\tilde{H}_{2/3}(x) = H_{1/2} \circ h_1 \circ h_2^{-1}(x)$  for all  $x \in S$ . For convenience we combine H and  $\tilde{H}$  into one isotopy,

$$H: S \times [0, 2/3] \to S$$
 such that  $H_0(x) = x$  and  $H_{2/3}(x) = H_{1/2} \circ h_1 \circ h_2^{-1}(x)$   
=  $h_0 \circ h_2^{-1}(x)$  for all  $x \in S$ .

The pattern for all future isotopies was set in the last five paragraphs. By Lemma 1 we have  $H_{2/3}(P^{-1}(O(\sigma, T_2))) \subseteq H_{2/3}(h_2(N^2(\sigma, T_2))) = h_0(N^2(\sigma, T_2))$  for each simplex  $\sigma \in T_2$ . Furthermore, we have by our choice of  $T_2$  that diameter  $h_0(N^2(\sigma, T_2)) < \delta_2$ . As before, diameter  $H_{2/3}(g) < \delta_2$  for each  $g \in G$ .

By [S], [K], or [F] there exists a  $\delta_3 > 0$  such that two homeomorphisms of  $S^3$  onto itself that differ by less than  $\delta_3$  are  $\frac{1}{8}$ -isotopic.

Let  $T_3$  be a subdivision of  $T_2$  so that for each simplex  $\sigma \in T_3$ , diameter  $h_0(\sigma) < \delta_3/5$ . Let  $h_3 : M \to S$  be a homeomorphism such that for each simplex  $\sigma \in T_3$ ,  $h_3(\sigma) \subseteq P^{-1}(O(\sigma, T_3))$ .

By an argument exactly as above we show that  $\rho(H_{2/3} \circ h_2 \circ h_3^{-1}, H_{2/3}) < \delta_2$  and hence there exists a  $\frac{1}{4}$ -isotopy  $\tilde{H} \colon S \times [\frac{2}{3}, \frac{3}{4}] \to S$  such that  $H_{2/3} = \tilde{H}_{2/3}$  and  $\tilde{H}_{3/4} = H_{2/3} \circ h_2 \circ h_3^{-1} = h_0 \circ h_3^{-1}$ . Again we combine H and  $\tilde{H}$  to get an isotopy  $H \colon S \times [0, \frac{3}{4}] \to S$  such that  $H_0 = id$  and  $H_{3/4} = h_0 \circ h_3^{-1}$ . We continue in this same fashion. For each positive integer n we choose a  $\delta_n > 0$  such that any two homeomorphisms of  $S^3$  onto  $S^3$  that differ by less than  $\delta_n$  are  $(\frac{1}{2})^n$ -isotopic. We pick a subdivision  $T_n$  of  $T_{n-1}$  such that for each simplex  $\sigma \in T_n$  diameter  $h_0(\sigma) < \delta_n/5$ . We use Theorem 0 to obtain a homeomorphism  $h_n \colon M \to S$  such that for each simplex  $\sigma \in T_n$ ,  $h_n(\sigma) \subseteq P^{-1}(O(\sigma, T_n))$ . We assume inductively that we have an isotopy  $H \colon S \times [0, (n-1)/n] \to S$  such that  $H_0 = id$  and  $H_{(n-1)/n} = h_0 \circ h_{n-1}^{-1}$ . Then for each  $y \in M$ ,  $h_{n-1}(y)$  and  $h_n(y)$  are both contained in  $h_{n-1}(N^2(\sigma, T_{n-1}))$  for some  $\sigma \in T_{n-1}$ .  $\rho(H_{n-1} \circ h_n^{-1}, H_{(n-1)/n}) < \delta_{n-1}$ . Hence there exists a  $(\frac{1}{2})^{n-1}$ -isotopy:

$$\widetilde{H}: S \times \left[\frac{n-1}{n}, \frac{n}{n+1}\right] \to S$$
 such that  $\widetilde{H}_{(n-1)/n} = H_{(n-1)/n}$ 

and

$$\tilde{H}_{n/(n+1)} = H_{(n-1)/n} \circ h_{n-1} \circ h_n^{-1} = h_0 \circ h_n^{-1}.$$

As above, we combine H and  $\tilde{H}$  to get  $H: S \times [0, n/(n+1)] \to S$  such that  $H_0 = id$  and  $H_{n/(n+1)} = h_0 \circ h_n^{-1}$ .

Thus, for  $0 \le t < 1$  we get a continuous family of a homeomorphism  $H_t: S \to S$  such that

- (i) if  $(n-1)/n \le t \le n/(n+1)$  then  $\rho(H_t, H_{(n-1)/n}) < (\frac{1}{2})^{n-1}$ ,
- (ii)  $\rho(H_{n/(n+1)}, h_0 \circ P) < (\frac{1}{2})^n$ .

The first property of the  $H_t$ 's is clear from the above description of the H's and  $\tilde{H}$ 's. To prove property (ii), let  $x \in S$ . Then there exists a simplex  $\sigma \in T_n$  such that  $P(x) \in \sigma$ . Thus both x and  $h_n \circ P(x)$  are in  $P^{-1}(O(\sigma, T_n)) \subseteq h_n(N^2(\sigma, T_n))$ . Thus both  $H_{n/(n+1)}(x)$  and  $H_{n/(n+1)}(h_n \circ P(x)) = h_0 \circ h_n^{-1} \circ h_n \circ P(x) = h_0 \circ P(x)$  are in  $H_{n/(n+1)}(x) \circ h_n(N^2(\sigma, T_n)) = h_0(N^2(\sigma, T_n))$ . But this latter set has diameter  $0 \in T_n$ .

Clearly, if we define  $H_1: S \to S$  by  $H_1 = h_0 \circ P$ , then we get a pseudo-isotopy  $H: S \times [0, 1] \to S$  such that  $H_0 = id$  and for each element  $g \in G$ ,  $H_1(g)$  is a distinct point of S.

## REFERENCES

- [A] S. Armentrout, Cellular decompositions of 3-manifolds that yield 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 453-455.
- [A-P] S. Armentrout and T. M. Price, On decompositions and homotopy groups, Trans. Amer. Math. Soc. (to appear).
- [F] G. M. Fisher, On the group of all homeomorphisms of a manifold, Trans. Amer. Math. Soc. 97 (1960), 193-212.
  - [K] J. M. Kister, Isotopies in 3-manifolds, Trans. Amer. Math. Soc. 97 (1960), 213-224.
- [S] D. E. Sanderson, Isotopy in 3-manifolds. III: Connectivity of spaces of homeomorphisms, Proc. Amer. Math. Soc. 11 (1960), 171-176.

University of Iowa, Iowa City, Iowa